Prova teorica 2015.02.14
Revision as of 17:33, 13 June 2017 by FedericoB (talk | contribs) (→Esercizio c.1: Aggiunta soluzione)
Testo: [1]
Esercizio c.1
Soluzione di Silas
#define MAX
monitor altcolbb{
queue buff;
color_t last_color; //0: red, 1:blue, -1:"superstate", means that both red and blue are accepted
int wait_red, wait_blue;
condition ok2read, redok, blueok;
void altcolbb(void){
buff = new queue();
last_color = -1;
wait_red = wait_blue = 0;
}
procedure entry void write(color_t color, generic_type val){
if(last_color == color || buff.length() == MAX){ //we can't enqueue if the colors are the same or if the buffer is full
if(color == 0){ //enqueue to "reds"
wait_red++;
redok.wait();
wait_red--;
}else{ //enqueue to "blues"
wait_blue++;
blueok.wait();
wait_blue--;
}
}
buff.enqueue(val); //append val and update last_color
last_color = color;
ok2read.signal();
}
procedure entry generic_type read(void){
if(buff.length() == 0)
ok2read.wait();
generic_type ret = buff.dequeue();
if(buff.length() == 0)
last_color = -1; //if buff is empty both colors can now be added
switch(last_color){
case -1: {
if(wait_red>wait_blue) //if there are more "reds" waiting to write we signal them
redok.signal();
else
blueok.signal(); //otherwise we signal "blues"
break;
}
case 0: {
blueok.signal();
break;
}
case 1: {
redok.signal();
break;
}
}
}
}
Soluzione di MarcoNegrini
I corrected Silas's version
#define MAX
monitor altcolbb{
queue buff;
color_t last_color; //0: red, 1:blue, -1:"superstate", means that both red and blue are accepted
condition ok2read, ok2write, redok, blueok;
void altcolbb(void){
buff = new queue();
last_color = -1;
}
procedure entry void write(color_t color, generic_type val){
if(buff.length() == MAX){ //here waits if buff is full
ok2write.wait();
if(last_color==-1){ //if buff was empty it can just enqueue and exit
buff.enqueue(val);
last_color = color;
}
else{
if(color == 0){ //red section
if (last_color == 0) //if last was red it needs to wait
redok.wait();
buff.enqueue(val);
last_color = color; // it must set last color before signaling other writers
blueok.signal(); //blue can now enqueue his value
}else{ //blue section, same as above
if (last_color == 1)
blueok.wait();
buff.enqueue(val);
last_color = color;
redok.signal();
}
}
ok2read.signal(); // reader can now read
}
procedure entry generic_type read(void){
//here waits if needed, then dequeue
if(buff.length() == 0)
ok2read.wait();
generic_type ret = buff.dequeue();
//here signal the one that has been waiting for more time
// it MUST be of the last_color color
if(buff.length() == 0){
color_t tmp=last_color;
last_color = -1;
// last color MUST be set to -1 here because
// if there were writers waiting on ok2write.wait() (full buffer case)
// they woundn't be signaled here, this happens if MAX=1
if (tmp == 1) //
blueok.signal();
else
redok.signal();
}
ok2write.signal();
}
}
Soluzione di FedericoB
relating to Silas and Marco solution. A bounded buffer is a queue, so i think is wrong to use last_color as head element color when it's used as tail element color.
#define MAX
monitor altcobb {
deque buffer
condition waitRed, waitBlue, ok2read, ok2write
altcobb() {
buffer = new Deque()
}
procedure entry void write(colot_t color,generic_type val) {
if (deque.getSize()==MAX) ok2write.wait()
if (buffer.getSize==0) queue.addLast((val,color))
else
if (color==RED)
if (buffer.getLast().color==BLUE)
queue.addLast((val,color))
waitRed.signal()
else
waitBlue.wait()
queue.addLast((val,color))
else
if (buffer.getLast().color==RED)
queue.addLast((val,color))
waitBlue.signal()
else
waitRed.wait()
queue.addLast((val,color))
ok2read.signal()
}
procedure entry generic_type read() {
if (deque.isEmpty()) ok2read.wait()
element = deque.dequeueFirst();
ok2write.signal()
return element;
#needed explanation: after the ok2write.signal() the current process will be put in wait state in the urgent stack,
#but after the woke up process has exited the monitor this process will be woke up and it will return the element.
}
}
Esercizio c.2
Soluzione di Silas
I semafori garantiscono che A e B vengano eseguiti in maniera sequenziale e che accedano in maniera mutualmente esclusiva ad n, quindi l'unica variazione possibile è il thread di inizio per la sequenza. Nel caso sia A ad accedere per primo alla CS si ha: n = ((1*2)+2)*3 = 12 Nel caso sia invece B ad accedere per primo alla C si ha: n = (((0*2)+1)*3)+2 = 5 Quindi n = 12 e n = 5 sono i due possibili valori.